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Abstract 

The paper studies hospital networks where edges represent physicians’ affiliated with multiple 

hospitals. Using data from the universe of hospitals in the Brazilian healthcare system (n=7,837) 

and their corresponding physicians (n=623,680), we calculate local clustering using monthly 

variation from January 2016 to December 2023. We estimate network disruptions induced by 

the COVID-19 pandemic by comparing local clustering before and after the pandemic. The 

pandemic caused local connectivity disruptions in neighborhoods where triads are more likely 

formed under light physician flow. Heavy flow neighborhoods displayed resilience to the 

pandemic and connectivity was largely unaffected.  
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1. Introduction 

In health care, network structures arise in diverse contexts and can influence a variety of health 

outcomes. For example, social networks have been shown to influence the uptake of medical 

treatments (Sargent et al., 2024), the diffusion of vaccines (Hao and Shao, 2022) , healthy 

behaviors like physical activity (Prochnow and Patterson, 2022) , unhealthy behaviors like 

smoking (Christakis and Fowler, 2008; Sajjadi et al., 2018) or obesity-related habits (Serrano 

Fuentes et al., 2019), risky sexual behavior (Asrese and Mekonnen, 2018; Shushtari et al., 2018), 

mental health (Park et al., 2018; Turón et al., 2023), and drug use (Falade-Nwulia et al., 2022), 

to name a few. Networks contribute to our understanding of health care systems, and network 

data can be used to develop network interventions that may accelerate and enhance 

healthcare delivery (Valente, 2012). 

One important area where networks play a key role is technology adoption and the 

spread of information and knowledge (Eckles et al., 2024). The literature has documented as 

early as in the 1960s that physicians’ networks can influence the adoption of medical 

innovations (Coleman et al., 1966). Since then, network analysis has been increasingly 

contributing to the examination of drivers of the diffusion of innovations. 

Physicians, and by extension their hospitals, are embedded in networks of relationships 

(Bravi et al., 2013; West et al., 1999). This connectivity in health care is crucial for several 

reasons. For example, research shows that physicians’ knowledge can gradually deteriorate 

over time (Durning et al., 2010; Ramsey et al., 1991). Medical innovations are often not 

translated into practice in a timely manner (Westfall et al., 2007). Similarly, ineffective medical 

practices sometimes persist despite new scientific evidence supporting de-adoption (Selby and 

Barnes, 2018). Well-functioning networks disseminate information and therefore can mitigate 

these challenges. 

Clustering is an important topological characteristic for network diffusion. In a hospital 

network, the local clustering coefficient of hospital 𝑖 is defined as the probability that two 

randomly selected hospitals linked to 𝑖 are linked to each other. As such, local clustering 

measures connectivity in the neighborhood of 𝑖. Networks with low local clustering have 
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structural holes, i.e. missing links between hospitals connected to 𝑖 (Burt, 1992). These 

structural holes may delay or even prevent diffusion (Newman, 2010). In fact, the classical work 

of Watts and Strogatz suggests that the dissemination of ideas is facilitated in ‘small-world’ 

networks, i.e. networks with short distances between nodes and a high degree of local 

clustering (Watts and Strogatz, 1998). 

The literature has shown that local clustering has a positive impact on content 

propagation (Li et al., 2018) and adoption probability (Katona et al., 2011). Moreover, the flow 

of information is related to organizational relations (Malenko, 2024). These organizational 

structures are associated with local clustering.  For instance, in the economics literature, 

Lahdelma uses employer–employee data and finds a positive relationship between local 

clustering and interorganizational mobility (Lahdelma, 2022). While research has shown that 

networks of medical knowledge and clinical practice exhibit small-world patterns (Tachimori et 

al., 2013), more needs to be learned about of the patterns of local clustering in health-related 

networks. 

The literature above highlights the importance for health care professionals to maintain 

connectivity. However, it is possible, or even likely, that the COVID-19 pandemic disrupted 

medical networks.  The pandemic triggered unprecedented policy response in healthcare 

systems around the world. Many system-wide impacts have been documented, including: 

sudden inflow of patients and high admission rates associated with new COVID-19 cases 

(Jeffery et al., 2020; Phua et al., 2024), the suspension of elective surgeries (Frio et al., 2022), 

and delays in diagnosis procedures (Maringe et al., 2020). Nevertheless, less in known about 

how the pandemic affected topological structures of networks in healthcare. Our paper focuses 

on clustering. 

The paper uses social network analysis to examine associations between the COVID-19 

pandemic and hospitals’ local clustering using a large dataset from the Brazilian Unified Health 

System – SUS.  SUS has a decentralized design where federal, state, and municipal governments 

work together to fund and manage health care delivery. While municipalities manage primary 
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care, hospitals are typically managed by state governments.  As such, we delimit hospital 

networks by state borders. 

Our analysis is based on monthly data on physicians and their hospital affiliations. These 

type of data are sometimes referred to as affiliation data. We construct networks where 

hospitals are linked if they share physicians. This allows us to calculate hospitals’ local clustering 

over time and make comparisons using data before and after the pandemic.   

 

2. Methods 

2.1 Data 

The paper uses publicly available data from the Brazilian Unified Health System – SUS. The data 

is managed by the SUS’s Information Technology Department – DATASUS. DATASUS divulges 

anonymous data available to the public in compliance with Article I of Resolution 510/2016 of 

the National Research Ethics Commission (Ministério da Saúde, 2016). Specifically, the data 

come from the National Registry of Health Establishments (in Portuguese, Cadastro Nacional de 

Estabelecimentos de Saúde) –  CNES (https://cnes.datasus.gov.br/). 

The CNES-PF database contains monthly information about all SUS hospitals and their 

corresponding physicians. The database tracks SUS physicians and how many hours they 

worked in each hospital. For each month, we drop physician-hospital observations where hours 

worked are reported to be zero. 

The sampling period is from January 2016 to December 2023. In total, our sample 

contains 623,680 physicians and 7,837 hospitals in all Brazilian states (including the federal 

district). To the best of our knowledge, the paper represents the largest social network analysis 

of physicians’ network clustering in Brazil. 

 

https://cnes.datasus.gov.br/
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2.2 Building the Hospital Network 

In many health care systems, it is common for physicians to practice in multiple sites (Xierali, 

2018). Physicians’ connections can benefit healthcare delivery in different ways. Doctors with 

multiple hospital affiliations have greater service rates and procedure breadth (Linde and 

Beilfuss, 2021). Moreover, empirical work has shown that physicians with network affiliations 

are associated with higher quality of health care (Friedberg et al., 2007). 

 As discussed above, our data describes physician-hospital employment ties. These type 

of data are referred to as affiliation data as they describe which actors (physicians) are affiliated 

with which macro structures (hospitals). We use state-by-month affiliation data to construct 

undirected hospital networks where a link between two hospitals exist if at least one physician 

is active (i.e. works at least one hour) on both hospitals. That is, for each state and month, the 

hospital network is the one-model projection of the affiliation data onto hospitals. 

  State borders are used to define the set of hospitals in a network, which is in line with 

the state-level management of hospitals in SUS. As our sample includes all 26 Brazilian states 

and the federal district (indexed by 𝑠 = 1…27), with monthly data from 2016 to 2023 (indexed 

by 𝑡 = 1…96), our analysis involve 2592 (or 27 × 96) networks that can be indexed by 𝑠𝑡.  The 

Appendix shows summary statistics of the hospital networks of all states, for selected periods 

(July of every year in the sample). 

2.3 Hospital Clustering 

It is reasonable to assume that the connection between two hospitals that share a large 

number of physicians is stronger than the connection between two hospitals that share one (or 

just a few) physician(s). To capture this, we develop our analysis based on weighted networks 

where the weight of the link between two hospitals is measured by the number of physicians 

the two hospitals have in common. 

Our interest lies on measuring clustering on this weighted network. We employ the 

widely-used weighted clustering coefficient of Barrat et al. to calculate the hospital-level 

measure (Barrat et al., 2004): 
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𝐶𝑖
𝑤 = (𝑠𝑖(𝑘𝑖 − 1))−1∑

𝑤𝑖𝑗 + 𝑤𝑖𝑝

2𝑗𝑝
𝑎𝑖𝑗𝑎𝑖𝑝𝑎𝑗𝑝 

where 𝑎𝑖𝑗 is the entry 𝑖 − 𝑗 of the adjacency matrix (𝑎𝑖𝑗 = 1 if 𝑖 is connected to 𝑗, 0 otherwise), 

and 𝑤𝑖𝑗 is the weight of the connection between hospitals 𝑖 and 𝑗,  𝑠𝑖 represents the strength of 

hospital 𝑖 (the sum of the weights of all hospitals connected to 𝑖, 𝑠𝑖 = ∑ 𝑎𝑖𝑗𝑤𝑖𝑗𝑗 ), 𝑘𝑖  is the 

degree of hospital 𝑖 (the number of hospitals connected to 𝑖, 𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗 ). Barrat’s weighted 

clustering returns its topological analog, i.e. classic (unweighted) clustering coefficient, when all 

nodes have the same weight.  

The clustering coefficient of hospital 𝑖 measures the fraction of possible 

interconnections between the neighbors of 𝑖. In other words, the clustering coefficient of 𝑖 

measures the probability that the neighbors of 𝑖 are themselves interconnected.  Local 

clustering captures whether a hospital is part of a larger highly connected group of hospitals 

and therefore can be viewed as a measure of the cohesiveness of the hospital’s neighborhood. 

The value of the (weighted or unweighted) clustering coefficient ranges between 0 and 

1, where higher values indicate higher connectivity. To understand connectivity, consider the 

set of three hospitals (a triad) indexed by 𝑖, 𝑗, and 𝑝. A triad centered on 𝑖 can have 0 links 

(hospitals do not share physicians), 1 link (𝑖 shares physicians with only one of the two other 

hospitals), 2 links (an open triangle,  𝑖 is connected with both  𝑗 and 𝑝, but 𝑗 and 𝑝 are not 

connected), or 3 links (a closed triangle, all three hospitals are connected – an interconnected, 

or transitive, triad). The higher the number of interconnected triads in the neighborhood of 𝑖, 

the higher is the neighborhood connectivity, and the higher is 𝑖’s local clustering coefficient. 

In networks where interconnected triads are more likely formed by the links with larger 

weights, the Barrat et al.’s weighted clustering coefficient will be larger than its topological 

analog (𝐶𝑖
𝑤 > 𝐶𝑖). To the contrary, when the weighted clustering is less than the unweighted 

analog (𝐶𝑖
𝑤 < 𝐶𝑖), the network structure is such that interconnected triads are generated by 

links with low weigh. Therefore, the comparison of 𝐶𝑖
𝑤 and 𝐶𝑖 allows us to classify hospitals by 

the weight of links of transitive triads in their neighborhood. We refer to hospitals in 
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neighborhoods with transitive triads of heavy physician flow as hospitals with ‘High Flow 

Transitivity’. Conversely, if 𝐶𝑖
𝑤 ≤ 𝐶𝑖, hospital type is of ‘Low Flow Transitivity’. 

The collection of all 𝐶𝑖
𝑤 represents the local clustering profile of a hospital network. The 

average 𝐶𝑖
𝑤 of a network summarizes its clustering profile and therefore represents a measure 

of cohesiveness (Barrat et al., 2004; Watts and Strogatz, 1998).  Computing state and national 

clustering averages over time allows us to examine how the connectivity between hospitals 

evolve thus offering insights on system-wide trends. 

2.4 Empirical Model 

We estimate the following empirical model to test whether the pandemic disrupted clustering 

and whether the disruption varies by clustering patterns:  

ln⁡(𝐶𝑤)𝑖𝑡 = 𝛽0 + 𝛽1𝑃𝑡⁡+⁡𝛽2𝐻𝑖𝑡 + 𝛽3(𝑃 × 𝐻)𝑖𝑡 + 𝑓(𝑡)𝑠 +⁡𝜌𝑖 + 𝜀𝑖𝑡 

The dependent variable ln⁡(𝐶𝑊)𝑖𝑡 is the log of the clustering coefficient of hospital 𝑖 in period 𝑡. 

𝑃 is a binary indicator for the onset of the pandemic. The first COVID-19 case recorded in Brazil 

was on February 25, 2020. As such, pre-pandemic baseline observations are assigned 𝑃 = 0 

while 𝑃 = 1 from March 2020 onwards. 𝐻𝑖𝑡 is a binary indicator that equals 1 for high flow 

transitivity, 0 otherwise.⁡𝛽s are parameters to be estimated. In the log-level model, the 

interpretation of an estimate is that a unit change in the independent variable leads to a 100𝛽% 

change in the clustering coefficient. The term 𝑓(𝑡)𝑠 represents state-specific restricted cubic 

splines to capture nonlinear time trends (Harrell, 2015). This term is important because the 

dynamics of health care systems may vary in a nonlinear fashion from state to state due to 

unobserved state-specific characteristics (Rocha et al., 2015).  The term 𝜌𝑖  is a hospital fixed 

effect that controls for unobserved and persistent hospital characteristics. Finally, 𝜀𝑖𝑡 is the 

error term that is clustered to allow for intragroup correlation. 

The main interest lies on the coefficients 𝛽1 and 𝛽3. For each type of hospital, the model 

compares local clustering before and after the pandemic. 𝛽1 indicates the percentage change in 

the local clustering coefficient of hospitals with low flow transitivity, where interconnected 



8 
 

triads are more common among links with light physician flow. The impact of the pandemic on 

the local clustering of hospitals with high flow transitivity is given by 𝛽1 + 𝛽3. 

The coefficient ⁡𝛽2 measures the average difference in local clustering between the two 

types of hospitals. A value⁡𝛽2 > 0 suggests that, on average, the value of Barrat et al.’s 

weighted local clustering is higher in neighborhoods where closed triangles are more likely 

formed when hospitals share a large number of physicians. To the contrary, ⁡𝛽2 < 0 indicates 

that the local clustering coefficient is higher when closed triangles happen more frequently 

among light physician flow links.  

The baseline (pre-pandemic) level of clustering is recovered with an exponential 

transformation. For hospitals with low flow transitivity, baseline local clustering is given by 

exp(𝛽0). For hospitals with high flow transitivity, pre-pandemic local clustering is recovered by 

exp(𝛽0 +⁡𝛽2). The model is estimated using ordinary least squares. 

 

3. Results 

3.1 Descriptive Statistics 

3.1.1 Hospital data 

Figure 1 describes the spatial and temporal distributions of hospitals in our sample. Panel (A) 

distributes the 7,837 by states. We observe significant spatial heterogeneity. For example, São 

Paulo is the state with the largest number of hospital (1,188) while the northern state of 

Roraima (which borders Venezuela) has only 18 hospitals. Panel (B) shows the temporal 

dynamics of the number of hospitals in the entire national healthcare system. The national 

hospital infrastructure is relatively stable, with a small decrease in the number of hospitals 

around 2018-2020, followed by an increase in 2020-2022. The number of hospitals starts at 

6106 in Jan 2016, drops to a minimum of 5914 in Jan 2020, and reaches 6328 in the last month 

of the sample (Dec 2023). 



9 
 

 
Figure 1: Number of hospitals in the study. (A) Distribution of hospitals, by state (N=7,837). (B) 
Number of hospitals in the sample, monthly counts from Jan 2016 to Dec 2023. 

 

3.1.2 Physician data 

Figure 2 describes the sample of physicians and their affiliations. Panel (A) distributes the 

623,680 physicians in our sample by state. Again São Paulo leads the chart with 187,298 

physicians, which accounts for approximately 30% of the physicians employed in SUS hospitals. 

Panel (B) shows the time path of the number of physicians in the national system. There is a 

relatively linear increase, with the number of physicians growing from 234,919 in Jan 2016 to 

341,378 in Dec 2023. 

To investigate the extent of practice in multiple sites, we use the physician level data to 

compute, for every month, the number of hospitals (employment ties or affiliations) of each 

physician.  

Panels (C) of Figure 2 summarizes the physician-by-month data (N=27,403,641) with a 

focus on the number of employment ties (affiliations) for each observation. We find that 

approximately 14.2 million observations represent a physician-month dyad with a single 

hospital affiliation. More than 48% of the observations represent multiple affiliations. Panel (D) 

averages the count of affiliations for each month of the sample. The data show that, on 

average, Brazilian physicians in the hospital system are over time affiliated with an increasing 

number of hospitals, i.e. from an average of 1.680 (99% CI,[1.673-1.687]) in Jan 2016 to 1.976 

(99% CI,[1.969-1.982]) in Dec 2023. 
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Figure 2: Description of physicians’ data. (A) Distribution of physicians, by state (N=623,680). (B) 
Number of active physicians in the sample, monthly counts from Jan 2016 to Dec 2023. (C) 
Distribution of physician-month observations, by number of employment ties (N= 27,403,641). 
(D) Number of employment ties averaged each month over all active physicians.  The shaded 
area represents the 99% confidence interval for the mean of the count data. 

 

3.1.3 Model Variables 

Table 1 shows summary statistics of the variables of the empirical model. As discussed above, 

an observation (indexed by 𝑖𝑡) represents a hospital in a month. On average, weighted local 

clustering is larger than its unweighted analog. This suggests that transitive triads are more 

common in neighborhoods with heavy (as opposed to light) flow of physicians. In fact, the last 

row of the table shows that 𝐶𝑤 > 𝐶 for 73.4% of the observations. Both local clustering 

coefficients have similar interquartile range of approximately 0.3.  Finally, half of the 

observations represent hospitals operating after the start of the COVID-19 pandemic. 
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Table 1: Summary Statistics 

 Mean Median Std. Dev. 
25th 

Quantile 
75th 

Quantile 

𝐶𝑤 0.628 0.620 0.216 0.470 0.779 

𝐶 0.555 0.509 0.225 0.381 0.686 

𝑃 0.500 0 0.500 0 1 

𝐻 0.734 1 0.442 0 1 

Notes: N=506,350. 
 

Figure 3 (A) shows the distribution of Barrat et al.’s local clustering measure for all 

observations in our sample (N=506,350). The value of 𝐶𝑤 is zero for only 3% of the 

observations. For these hospitals, none of the possible connections among the neighbors are 

materialized. For 10% of the observations, the neighborhood of hospitals represent a clique (all 

possible links are materialized, thus 𝐶𝑤=1). Next, we compute 𝐶𝑤 state averages of all hospital-

month observations. Figure 3 (B) displays these results in a map of Brazil. No clear spatial 

pattern emerges. In fact, we tested for the correlation between 𝐶𝑤 and the state’s area using a 

linear regression (with clustering as the dependent variable). We cannot reject the null 

hypothesis of no correlation between the two variables (the p-value of the slope is 0.192). 

 
Figure 3: Local clustering coefficient. (A) The local clustering coefficient distribution using hospital-
month data employed in the empirical model (N=506,350). (B) Local clustering map based on state 
averages of the model’s data. 
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Figure 4 displays the national clustering dynamics in the sampling period (2016-2023). 

Specifically, the figure shows the monthly average of Barrat et al.’s local clustering coefficient, 

and its 95% confidence interval, by hospital type. In general, the local clustering coefficients of 

both types of hospitals are increasing over time suggesting that Brazilian hospital networks are 

become more interconnected. This result sheds some light on the hospitals and physicians time 

paths discussed above. Figure 1 (B) shows that, between 2016 and 2023, the number of 

hospitals is relatively stable while Figure 2 (B) shows that, in the same period, the number of 

physicians grew by about 45%. The data in Figure 4 suggests that the faster rate of expansion of 

physicians (relative to hospital infrastructure) is contributing to an increase in hospital 

connectivity. Figure 4 also shows that month-to-month variation of the clustering of hospitals 

with low flow transitivity is less smooth and noisier (with wider confidence intervals) than that 

of high flow transitivity. 

 
Figure 4: The system-wide dynamics of the local clustering coefficient, by hospital type. The 371,428 
hospital-month observations of high flow hospitals are averaged for each month from Jan 2016 to Dec 
2023. The same procedure is repeated for the 150,192 low flow observations. Shaded areas represent 
95% confidence intervals for the mean. 
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3.2 Model estimates 

Table 2 shows the estimates of the empirical model. We find that the baseline coefficient 𝛽0 for 

low type hospitals is equal to -0.560 (p-value<0.01). This means that, abstracting away from 

state-specific nonlinear time trends and unobserved fixed hospital characteristics, the average 

pre-pandemic local clustering of Brazilian hospitals with low flow transitivity is exp(𝛽0)=0.571. 

The hospital type coefficient 𝛽2 is equal to -0.019 (p-value<0.01), i.e. hospitals with high flow 

transitivity have pre-pandemic levels of local clustering that are 1.9% lower than that of 

hospitals with low flow transitivity. On average, the pre-pandemic local clustering of high type 

hospitals is exp(𝛽0 + 𝛽2)=0.561. 

 We test whether the pandemic changed the local clustering coefficient of hospitals. We 

find a statistically significant impact for hospitals with low flow transitivity. Specifically, the 

estimate 𝛽1 = −0.019 (p-value < 0.01) indicates that the local clustering coefficient of low flow 

transitivity hospitals after the pandemic is 1.9% lower than its pre-pandemic level. 

Interestingly, we do not find the same result for hospitals with high flow transitivity. For 

those hospitals, the percentage impact of the pandemic is measured by 𝛽1 + 𝛽3. While both 

coefficients are statistically significant, they have opposite signs and similar magnitude. The 

pandemic effect for high type hospitals (𝛽1 + 𝛽3) is close to zero in magnitude and, based on a 

Wald test, we cannot reject the null H0: 𝛽1 + 𝛽3 = 0 at the 5% significant level (p-value = 

0.632).  

Table 2: Parameter estimates 

 Coefficient 
Robust 
Std. Err. 

t P-value 95% Conf. Int. 

𝛽0 -0.560 0.007 -80.21 0.000 [-0.573 , -0.546] 

𝛽1 -0.019 0.007 -2.72 0.006 [-0.033 , -0.005] 
𝛽2 -0.019 0.007 -2.86 0.004 [-0.032 , -0.006] 
𝛽3 0.017 0.008 2.25 0.025 [0.002 , 0.032] 

Notes: N=506,264. R-squared=0.69. Standard errors are clustered at the hospital level. 
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4. Discussion 

The COVID-19 pandemic caused a public health crisis around the world. Brazil has taken much 

of the spotlight for being among the countries with highest infection rates and death tolls. 

Many scholars associate the scale of the pandemic in Brazil to poor federal government 

coordination that created a response vacuum to be filled by local health policies (Bigoni et al., 

2022; Knaul et al., 2021; Touchton et al., 2021).   

To curb the spread of the virus, Brazil (and other countries) resorted to a variety of 

public health policies. For example, as early as March 2020, Brazil had experienced schools and 

restaurants closures, lockdowns, quarantines, travel restrictions, and large event bans (Cheng 

et al., 2024, 2020; Porcher, 2020). Unfortunately, the sharp policy response resulted in serious 

unintended socioeconomic consequences (Wichmann and Moreira Wichmann, 2023; 

Wichmann and Wichmann, 2022). 

The workforce and labor markets are areas that were significant impacted by the 

pandemic. Survey data reveals that the professional life of Brazilians was significantly impacted 

by pandemic-related restrictions (Faria de Moura Villela et al., 2021). According to a University 

of Oxford study that examines data from multiple countries, Brazil leads in using workplace 

closure as a non-pharmaceutical intervention to contain COVID-19 (Hale et al., 2021, 2020). For 

health care workers, mental health and burnout during the pandemic were significant 

issues(Cardwell et al., 2023). The collapse of health care systems and adverse working 

conditions contributed to exits from the health care workforce (Azzopardi-Muscat et al., 2023; 

Frogner and Dill, 2022; Poon et al., 2022). The pandemic also decreased the supply of health 

care professionals in rural areas of Brazil (Wichmann and Wichmann, 2022).  

All these forces suggest that local clustering could be impacted by the pandemic. 

Interestingly, we only find an impact for hospitals with low flow transitivity. We do not find 

statistical support in the data for a pre- vs post-pandemic difference in the local clustering 

coefficient of hospitals with neighborhoods where transitive triads are formed by heavy 

physician flows. In other words, while the pandemic disrupted local clustering of low type 

hospitals, the local clustering in heavy flow neighborhoods was not affected by the pandemic.  
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Organizational support is potential mechanism for this differentiated effect. Hospitals in 

heavy physician flow neighborhoods may inspire organizational trust, which has demonstrated 

to decrease turnover intentions of health care professionals during the pandemic (Poon et al., 

2022). Another possibility is differentiated working conditions. Hospitals in local systems with 

low physician flows may have less personnel substitution/complementarity opportunities and 

could rely more heavily on increased working hours in periods of high service demand such as a 

pandemic. This can contribute to higher turnover and consequently network ruptures. Future 

research with additional data should investigate these and other hypotheses to uncover the 

drivers of the impacts estimated here. 

Finally, low local clustering may decrease local information flows and have unfavorable 

system-wide implications. However, it is possible for a hospital with low clustering coefficient to 

have a competitive edge in its neighborhood. This occurs because a low clustering hospital is in 

a key local position as its neighbors are in a sparse region of the network. For example, if two 

hospitals 𝑗 and 𝑝 are linked to 𝑖 but are not directly connected, then 𝑖 is in a key position to 

control the flow of ideas between 𝑗 and 𝑝. We also note that networks that facilitate 

information diffusion do not necessarily imply that behavioral changes (Centola and Macy, 

2007). Future work is needed to test these hypotheses and examine the relationship between 

local clustering and the performance of hospitals. 

 

5. Conclusion 

By employing social network analysis to large datasets of Brazilian hospitals and their 

corresponding physicians, the paper sheds light on a relatively unexplored research area to 

offer new insights about how the COVID-19 pandemic disrupted local healthcare networks. 

Clustering in neighborhoods with heavy physician flow were not disrupted by the pandemic. In 

low flow neighborhoods, the pandemic decreased local clustering by 1.9%.  

The pandemic exposed weaknesses of health care systems around the world. As we 

evolve past COVID-19, various parts of multifaceted health care systems need special attention 
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and additional support to steer service levels back to pre-pandemic trajectories. The results in 

this paper suggest that the pandemic disruptions can be complex and propagate through 

networks. Health care delivery units have differentiated demands and policy should strive to 

accommodate this heterogeneity. On the positive side, just like disruptions may travel through 

networks, health policy can also leverage networks and use a targeted approach to optimize 

recovery efforts. For example, in trying to re-establish the connectivity lost during the 

pandemic, policy can use the methods developed in this paper to identify key hospitals, 

facilitate targeted partnerships, and incentivize stronger cooperation.  

5.1 Limitations 

This study has several limitations. First, the paper uses state-month physician-hospital 

affiliation data to construct networks. While utilizing state borders to delimit hospital networks 

is consistent with the state influence over the hospital system, the temporal resolution chosen 

to construct the network is arbitrary. While representing networks monthly allow us to use the 

highest level of detail available in the raw data, we note that network structure varies according 

to the chosen temporal resolution (Rocha et al., 2017). Further investigations of how sensitive 

topology properties of Brazilian healthcare networks are to the choice of temporal resolution is 

beyond the scope of this paper and should be the focus of future research. 

Second, our hospital network is based on the projection of our affiliation data onto 

hospitals. An alternative network can be constructed by projecting the affiliation data onto 

physicians. While the hospital network approach creates networks with approximately 20 to 

1,000 nodes (see Figure 1 A and Appendix), physician networks would be significantly larger 

(around from 1,000 to more than 150,000 nodes) and would require significant computational 

resources. These physician network are similar to contact networks where ‘contact’ represent 

proximity in space (e.g. hospital) and time (eg month). These contact networks have been used 

to study epidemic spread (Liljeros et al., 2007; Rocha et al., 2020). More work is needed to 

examine how the COVID-19 pandemic affected structural characteristics of physician networks. 

  Third, while our model controls for hospital fixed effects, we acknowledge that we 

cannot estimate the impact of the pandemic using a two-way fixed effect model as unobserved 
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time effects are collinear with the pandemic indicator 𝑃𝑡. Instead, our empirical approach uses 

splines to control for unobserved state-specific nonlinear time trends. The possibility remains 

that time-varying or trending network characteristics may influence local clustering and 

therefore lead to omitted variable bias. As a robustness check, we estimate an augmented 

version of the empirical model that includes additional control variables to capture network 

characteristics. Specifically, we augmented model with four new variables with variability at the 

network level (i.e. state-month): number of hospitals, density, diameter, and average path 

length. Refer to the Appendix for descriptive statistics. Results indicate that the coefficients of 

interest and the model’s r-squared are largely unaffected, which suggests that our splines are 

successfully controlling for unobserved state-specific time variation such as changes in the 

network.  

Fourth, the paper examines the impact of the pandemic on local clustering. In doing so, 

the paper uncovers a mechanism that mediates this impact. Controlling for hospital fixed 

effects, we find that only nodes in neighborhoods with light (as opposed to heavy) physician 

flows had their clustering negatively affected by the pandemic. However, many different 

dynamics could be at play and need further examination. For instance, our approach does not 

allow for the estimation of the impacts of time-invariant hospital characteristics on local 

clustering. Future research using different estimators such as fixed effects filters (Pesaran and 

Zhou, 2018) is needed to examine how persistent (and other) hospital characteristics mediate 

shocks to local clustering. 

Finally, the paper focus on local clustering, which is a node level network variable that 

has been shown to mediate network diffusion. As we are interested in identifying impacts of 

COVID-19 on a node level characteristic, it is important to use panel data methods, such as 

node level (hospital) fixed effects, to control for confounding variation based on persistent but 

unobserved hospital characteristics. Nevertheless, it is plausible that the pandemic also 

affected (global) network structure. Future research should examine global measures of 

hospital networks and access possible changes caused by the COVID-19 pandemic.  
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Appendix 
Summary Statistics of Selected Networks 

 

   July 2016  July 2017 

State/Initial 
Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

 Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

Acre AC 21 56 0.267 4 1.883  21 58 0.276 4 1.858 
Alagoas AL 71 537 0.216 4 1.932  71 534 0.215 4 1.943 
Amazonas AM 108 416 0.072 8 2.646  99 387 0.08 8 2.86 
Amapá AP 10 18 0.4 3 1.583  11 16 0.291 2 1.429 
Bahia BA 529 3998 0.029 7 2.968  537 4337 0.03 7 2.891 
Ceará CE 255 1857 0.057 6 2.585  274 1990 0.053 5 2.56 
Distrito Federal DF 42 408 0.474 3 1.543  46 446 0.431 3 1.488 
Espírito Santo ES 107 955 0.168 7 2.284  105 1003 0.184 6 2.166 
Goiás GO 417 2111 0.024 10 3.233  432 2395 0.026 8 3.168 
Maranhão MA 239 746 0.026 7 3.086  250 845 0.027 9 3.236 
Minas Gerais MG 604 5722 0.031 7 2.882  602 6098 0.034 7 2.824 
Mato Grosso do Sul MS 111 425 0.07 6 2.739  113 448 0.071 6 2.637 
Mato Grosso MT 162 556 0.043 8 3.07  161 546 0.042 9 3.051 
Pará PA 230 1082 0.041 7 2.967  229 1101 0.042 7 2.877 
Paraíba PB 137 880 0.094 5 2.325  138 836 0.088 6 2.436 
Pernambuco PE 250 2070 0.067 7 2.649  253 2216 0.07 6 2.505 
Piauí PI 112 326 0.052 6 2.824  115 360 0.055 7 2.839 
Paraná PR 461 3154 0.03 8 2.976  449 3347 0.033 8 2.907 
Rio de Janeiro RJ 455 6066 0.059 6 2.416  465 6333 0.059 6 2.407 
Rio Grande do Norte RN 95 504 0.113 6 2.31  97 529 0.114 6 2.415 
Rondônia RO 81 266 0.082 4 2.368  83 281 0.083 5 2.421 
Roraima RR 12 22 0.333 3 1.556  11 16 0.291 2 1.429 
Rio Grande do Sul RS 328 3273 0.061 6 2.536  331 3592 0.066 5 2.462 
Santa Catarina SC 224 1794 0.072 5 2.593  221 2009 0.083 6 2.492 
Sergipe SE 43 266 0.295 3 1.703  42 258 0.3 4 1.735 
São Paulo SP 889 20945 0.053 6 2.441  891 22285 0.056 6 2.399 
Tocantins TO 61 99 0.054 9 2.998  63 114 0.058 8 2.956 
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   July 2018  July 2019 

State/Initial 
Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

 Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

Acre AC 20 62 0.326 3 1.766  21 53 0.252 5 2.012 
Alagoas AL 70 546 0.226 4 1.916  67 530 0.24 5 1.958 
Amazonas AM 100 478 0.097 9 2.818  96 411 0.09 9 3.025 
Amapá AP 10 12 0.267 2 1.571  10 17 0.378 3 1.583 
Bahia BA 537 4456 0.031 7 2.862  531 4646 0.033 6 2.849 
Ceará CE 282 2019 0.051 6 2.627  266 1847 0.052 6 2.627 
Distrito Federal DF 55 563 0.379 3 1.615  57 605 0.379 5 1.715 
Espírito Santo ES 102 931 0.181 5 2.148  103 983 0.187 5 2.12 
Goiás GO 428 2504 0.027 11 3.168  407 2424 0.029 9 3.053 
Maranhão MA 247 951 0.031 8 3.257  250 832 0.027 8 3.283 
Minas Gerais MG 605 6940 0.038 6 2.734  597 7615 0.043 7 2.621 
Mato Grosso do Sul MS 108 465 0.08 6 2.49  106 452 0.081 5 2.587 
Mato Grosso MT 166 569 0.042 8 3.044  167 676 0.049 7 2.742 
Pará PA 238 1112 0.039 8 3.074  232 1248 0.047 9 2.91 
Paraíba PB 136 820 0.089 5 2.417  128 716 0.088 7 2.443 
Pernambuco PE 253 2208 0.069 6 2.533  256 2311 0.071 6 2.52 
Piauí PI 113 339 0.054 6 2.705  110 324 0.054 6 2.684 
Paraná PR 443 3659 0.037 7 2.825  431 3822 0.041 7 2.754 
Rio de Janeiro RJ 459 6153 0.059 6 2.414  441 6176 0.064 5 2.373 
Rio Grande do Norte RN 100 502 0.101 5 2.458  97 483 0.104 7 2.489 
Rondônia RO 83 278 0.082 5 2.414  80 274 0.087 5 2.472 
Roraima RR 13 33 0.423 2 1.5  12 25 0.379 3 1.564 
Rio Grande do Sul RS 314 3932 0.08 5 2.366  304 4149 0.09 5 2.309 
Santa Catarina SC 222 2472 0.101 5 2.322  219 2647 0.111 5 2.264 
Sergipe SE 43 278 0.308 4 1.735  40 264 0.338 3 1.691 
São Paulo SP 893 25219 0.063 6 2.344  883 26562 0.068 5 2.314 
Tocantins TO 66 131 0.061 5 2.646  68 132 0.058 4 2.491 
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   July 2020  July 2021 

State/Initial 
Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

 Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

Acre AC 20 53 0.279 4 1.794  25 75 0.25 3 1.866 
Alagoas AL 82 664 0.2 5 2.045  81 709 0.219 4 1.972 
Amazonas AM 99 626 0.129 8 2.403  101 828 0.164 5 2.242 
Amapá AP 14 24 0.264 3 1.618  12 26 0.394 2 1.422 
Bahia BA 547 5173 0.035 7 2.828  565 5526 0.035 7 2.836 
Ceará CE 279 2375 0.061 6 2.496  292 2549 0.06 6 2.555 
Distrito Federal DF 60 778 0.44 3 1.578  68 970 0.426 3 1.575 
Espírito Santo ES 104 997 0.186 5 2.122  105 1028 0.188 6 2.15 
Goiás GO 411 2645 0.031 8 3.071  421 3123 0.035 8 2.803 
Maranhão MA 268 929 0.026 8 3.165  270 1003 0.028 7 3.122 
Minas Gerais MG 616 8538 0.045 6 2.582  626 9574 0.049 6 2.567 
Mato Grosso do Sul MS 108 484 0.084 7 2.633  108 530 0.092 5 2.518 
Mato Grosso MT 164 693 0.052 8 2.886  164 708 0.053 7 2.643 
Pará PA 248 1453 0.047 8 2.95  249 1436 0.047 8 2.917 
Paraíba PB 132 836 0.097 5 2.35  137 873 0.094 6 2.28 
Pernambuco PE 297 2961 0.067 6 2.507  297 2872 0.065 8 2.588 
Piauí PI 109 371 0.063 6 2.647  114 415 0.064 6 2.634 
Paraná PR 437 4106 0.043 7 2.707  429 4407 0.048 6 2.627 
Rio de Janeiro RJ 440 6788 0.07 5 2.33  446 7929 0.08 6 2.275 
Rio Grande do Norte RN 104 695 0.13 6 2.31  109 761 0.129 6 2.35 
Rondônia RO 83 318 0.093 5 2.441  88 348 0.091 5 2.436 
Roraima RR 14 28 0.308 2 1.491  13 28 0.359 4 1.773 
Rio Grande do Sul RS 315 4490 0.091 5 2.28  309 4773 0.1 5 2.225 
Santa Catarina SC 220 2744 0.114 5 2.225  225 3112 0.123 5 2.212 
Sergipe SE 42 283 0.329 4 1.704  41 283 0.345 3 1.605 
São Paulo SP 953 30365 0.067 5 2.304  969 34764 0.074 5 2.266 
Tocantins TO 70 146 0.06 6 2.655  71 191 0.077 4 2.377 
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   July 2022  July 2023 

State/Initial 
Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

 Hospitals 
(nodes) 

Links Density Diameter 

Average 
Path 

Length 

Acre AC 24 79 0.286 3 1.79  24 90 0.326 3 1.753 
Alagoas AL 77 810 0.277 5 1.851  79 807 0.262 5 1.896 
Amazonas AM 103 868 0.165 6 2.212  101 797 0.158 6 2.245 
Amapá AP 19 34 0.199 6 2.283  20 41 0.216 3 1.75 
Bahia BA 565 6166 0.039 6 2.686  573 6857 0.042 6 2.637 
Ceará CE 291 2789 0.066 6 2.449  290 2978 0.071 5 2.352 
Distrito Federal DF 66 871 0.406 3 1.625  67 890 0.403 3 1.598 
Espírito Santo ES 109 1093 0.186 6 2.09  106 1075 0.193 6 2.052 
Goiás GO 426 3592 0.04 8 2.731  420 3723 0.042 9 2.723 
Maranhão MA 275 1220 0.032 8 3.045  281 1364 0.035 7 2.931 
Minas Gerais MG 615 9735 0.052 6 2.532  610 10105 0.054 6 2.511 
Mato Grosso do Sul MS 112 645 0.104 5 2.438  111 765 0.125 6 2.317 
Mato Grosso MT 170 891 0.062 8 2.628  169 965 0.068 6 2.558 
Pará PA 255 1633 0.05 9 2.892  249 1658 0.054 7 2.787 
Paraíba PB 141 979 0.099 6 2.284  143 1058 0.104 5 2.222 
Pernambuco PE 284 3029 0.075 6 2.475  303 3145 0.069 6 2.492 
Piauí PI 111 450 0.074 5 2.529  113 577 0.091 5 2.469 
Paraná PR 415 4611 0.054 6 2.58  412 4774 0.056 6 2.574 
Rio de Janeiro RJ 451 8125 0.08 6 2.266  453 8403 0.082 5 2.257 
Rio Grande do Norte RN 117 831 0.122 6 2.378  122 897 0.122 7 2.406 
Rondônia RO 95 406 0.091 6 2.414  92 385 0.092 6 2.552 
Roraima RR 13 31 0.397 3 1.455  14 33 0.363 3 1.654 
Rio Grande do Sul RS 313 5020 0.103 5 2.204  308 4909 0.104 5 2.19 
Santa Catarina SC 225 3453 0.137 5 2.153  218 3581 0.151 5 2.11 
Sergipe SE 38 288 0.41 3 1.573  43 379 0.42 3 1.594 
São Paulo SP 928 35438 0.082 5 2.235  922 36969 0.087 5 2.198 
Tocantins TO 73 184 0.07 6 2.469  73 238 0.091 5 2.411 

 

 

 

 

 

 

 

 

 

 

 


